1. Find the sum of
$$\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$$

= $\sum_{n=1}^{\infty} \left[\frac{1}{3n} - \frac{1}{3(n+3)} \right] \implies s_n = \left(\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \dots - \frac{1}{3(n+1)} - \frac{1}{3(n+2)} - \frac{1}{3(n+3)} \right)$
so $\lim_{n \to \infty} s_n = \frac{11}{18}$

2. Determine whether the series is conditionally convergent, absolutely convergent or divergent.

$$\sum_{n=1}^{\infty} \ (-1)^{n-1} \ n^{-1/3}$$

by the AST the series converges and $\sum |a_n| = \sum \frac{1}{n^{1/3}}$ is a divergent p-series $\implies CC$

3. Test the series for convergence or divergence

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

use the integral test $\longrightarrow D$
(b) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{5^n n!}$
use the ratio test $\longrightarrow \lim_{n \to \infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)(2n+1)}{5^{n+1}(n+1)!} \cdot \frac{5^n n!}{1 \cdot 3 \cdots (2n-1)} = \dots \frac{2}{5} < 1 \implies AC$

4. Test the following for absolute convergence, conditional convergence or divergence.

(a)
$$\sum_{n=1}^{\infty} \frac{n-1}{n^2+n}$$

LCT with $\sum \frac{1}{n} \implies D$

(b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n-1}{n^2+n}$

by AST series converges, however $\sum \frac{n-1}{n^2+n}$ diverges by LCT $\implies CC$

(c)
$$\sum_{n=1}^{\infty} \frac{(3n)^n}{(1+8n)^n}$$

Root test $\implies AC$

(d) $\sum_{n=1}^{\infty} n^2 e^{-n^3}$

Integral test
$$\implies AC$$

(e) $\sum_{k=1}^{\infty} \frac{2^k k!}{(k+2)!}$

Ratio test or
$$\lim_{n \to \infty} a_n \neq 0 \implies D$$

(f) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 25}$

by AST series converges, however $\sum \frac{n}{n^2 + 25}$ diverges by LCT $\implies CC$

- (g) $\sum_{n=1}^{\infty} \sin n$ $\lim_{n \to \infty} a_n DNE \implies D$
- (h) $\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$

LCT with
$$\sum \frac{1}{n} \implies D$$

(i) $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n-1}}$

by AST series converges, however $\sum \frac{1}{\sqrt{n-1}}$ diverges by direct comparison $\implies CC$

(j) $\sum_{k=1}^{\infty} \frac{k+5}{5^k}$

Ratio test $\implies AC$